of the Urals

Russian Journal of Agricultural Research

The publication is registered by the Ministry of the Russian Federation
for Affairs of the Press, Television and Radio Broadcasting and Mass Communication Media.
Registration certificate: PI number 77-12831 on May 31, 2002
Subscription index in catalog «Russian Press» - 16356
ISSN 1997 - 4868 (Print)

The Journal is included in the list of the leading peer-reviewed scientific journals and publications, which should be published by the main results of theses for the degree of doctor and Ph.D.
The Journal is included in the Russian Science Citation Index.
Journal is included in the list of VAK (from 25.09.2017), No. 291

ISSN 2307-0005 (Online)
Key title: Agrarnyj vestnik Urala (Online)
Abbreviated key title: Agrar. vestn. Urala (Online)

Аграрный вестник Урала № 06 (160) 2017

Биология и биотехнологии

Азаренок В. А. доктор сельскохозяйственных наук, профессор Уральский государственный лесотехнический университет

Усольцев В. А. доктор сельскохозяйственных наук, профессор, Уральский государственный лесотехнический университет

Колчин К. В. аспирант Уральский государственный лесотехнический университет



 Forests play animportant role in reducing the amount of greenhouse gases in the atmosphere andpreventing climate change. One way to quantify сarbon exchange in forest coveris estimating changes in its biomass and carbon pools over time. Biomassestimating on the unit of area starts with harvesting sample trees and weighingtheir biomass. It is known the strong and sustainable relationship between treebiomass and its diameter (simple allometry), or between tree biomass and anumber of mass-forming (morphometric) indices (multi-factor allometry). Atpresent, in different countries and continents, the studies of theapplicability of the so-called generic (generalized, common) allometric modelsare intensified that would give acceptable accuracy in estimating forest biomass.In the article on the basis of the compiled database of tree biomass of Picea at a number of 1065 trees,allometric models of the four modifications are designed, which include theblock of independent dummy variables. These models provide an opportunity togive regional estimates of tree biomass when using some known mass-formingindices (stem and crown diameter and tree height). Allometric models proposedare indicative of their adequacy for the actual data (coefficients ofdetermination are 0.814 to 0.984) and can be applied in regional estimating ofspruce tree biomass. However, generic allometric models built using the totalquantity of actual data give in different ecoregions too large standard errors(up to 221 %) and unacceptable both positive and negative biases (from +311 to-99 %), that excludes any possibility of their application at regional levels.


Picea L., allometric models, tree biomass, sample plots, regional differences, standard errors, biases.


1. Stas S. M., Rutishauser E., Chave J., Anten N.P.R., Laumonier Y. Estimating the above-ground biomass in an old secondary forest on limestone in the Moluccas, Indonesia: Com-paring locally developed versus existing allometric models // Forest Ecology and Man-agement. 2017. Vol. 389. P. 27–34.

2. Forrester D. I., Tachauer I. H. H., Annighoefer P. et al. Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate // Forest Ecology and Management. 2017. Vol. 396. P. 160–175.

3. Falster D. S., Duursma R. A., Ishihara M. I. et al. BAAD: a Biomass And Allometry Data-base for woody plants // Ecology. 2015. Vol. 96. № 5. P. 1445.

4. Poorter H., Jagodzinski A.M., Ruiz-Peinado R., Kuyah S., Luo Y., Oleksyn J., Usoltsev V. A., Buckley T. N., Reich P. B., Sack L. How does biomass allocation change with size and differ among species? An analysis for 1200 plant species from five continents // New Phytologist. 2015. Vol. 208. Issue 3. P. 736–749.

5. Liang J., Crowther T.W., Picard N. et al. Positive biodiversity-productivity relationship predominant in global forests // Science. 2016. Vol. 354. Issue 6309. P. 196–208.

6. Jucker T., Caspersen J., Chave J. et al. Allometric equations for integrating remote sensing imagery into forest monitoring programmes // Global Change Biology. 2017. Vol. 23. P. 177–190.

7. Usoltsev V.A. Single-tree biomass of forest-forming species in Eurasia: database, climate-related geography, weight tables. Ekaterinburg, 2016. 336 р.

8. Usoltsev V.A. Single-tree biomass data for remote sensing and ground measuring of Eura-sian forests. CD-version in English and Russian. Ekaterinburg, 2016.

9. Schepaschenko D., Shvidenko A., Usoltsev V. А. et al. A dataset of forest biomass struc-ture for Eurasia // Scientific Data. 2017. Vol. 4. Article № 170070.

10. Draper N. R., Smith H. Applied regression analysis. М. : “Statistika” Publishing, 1973. 392 p.

11. Usoltsev V. A., Kolchin K. V., Voronov M. P. Dummy variables and biases of allometric models when local estimating tree biomass (on an example of Picea L.) // Eco-potential. 2017. № 1. P. 22–39.

12. Dalponte M., Reyes F., Kandare K., Gianelle D. Delineation of individual tree crowns from ALS and hyperspectral data: a comparison among four methods // European Journal of Remote Sensing. 2015. Vol. 48. P. 365–382.

13. Sheridan R. D., Popescu S. C., Gatziolis D., Morgan C.L.S., Ku N.-W. Modeling forest aboveground biomass and volume using airborne LiDAR metrics and forest inventory and analysis data in the Pacific Northwest // Remote Sensing. 2015. Vol. 7. № 1. P. 229–255.

14. Usoltsev V. A., Chasovskikh V. P., Noritsina Yu. V., Noritsin D. V. Allometric models of tree biomass for airborne laser scanning and ground inventory of carbon pool in the forests of Eurasia: Comparative analysis // Siberian Journal of Forest Science. 2016. № 4. P. 68–76.

Download article as PDF:

Our database contains 2917 authors

We have published 2740 articles in 133 issues.