Agrarian
Bulletin
of the Urals

Russian Journal of Agricultural Research

The publication is registered by the Ministry of the Russian Federation
for Affairs of the Press, Television and Radio Broadcasting and Mass Communication Media.
Registration certificate: PI number 77-12831 on May 31, 2002
Subscription index in catalog «Russian Press» - 16356
ISSN 1997 - 4868 (Print)

The Journal is included in the list of the leading peer-reviewed scientific journals and publications, which should be published by the main results of theses for the degree of doctor and Ph.D.
The Journal is included in the Russian Science Citation Index.
Journal is included in the list of VAK (from 25.09.2017), No. 291

ISSN 2307-0005 (Online)
Key title: Agrarnyj vestnik Urala (Online)
Abbreviated key title: Agrar. vestn. Urala (Online)

Аграрный вестник Урала № 07 (161) 2017

Биология и биотехнологии

Азаренок В. А. доктор сельскохозяйственных наук, профессор Уральский государственный лесотехнический университет

Усольцев В. А. доктор сельскохозяйственных наук, профессор, Уральский государственный лесотехнический университет

Колчин К. В. аспирант Уральский государственный лесотехнический университет

ВОРОНОВ М. П. кандидат технических наук, доцент Уральский государственный лесотехнический университет

УДК:581.5

TRANSCONTINENTAL ADDITIVE ALLOMETRIC MODEL AND WEIGHT TABLE FOR ESTIMATING SPRUCE TREE BIOMASS

 For the first time in Russian literature the problem of harmonizing allometricmodels of tree biomass components (stem, branches, foliage, roots) by means ofensuring the principle of their additivity has been solved. It is implying thatthe sum of biomass values obtained by component equations should be equal tothe value of total biomass received with the general equation. For this purposethe unique tree biomass database in a number of 1 065 spruce trees (Picea sp.) growingon the territory of Eurasia is compiled. Additive system of biomass component relations,as a transcontinental three-step model of proportional weighting is designed. Onits basis the corresponding taxation table of the biomass component compositioninvolving two inputs – the stem diameter at breast height and the tree height –is suggested. In contrast to the “aggregation”method of designing the additive model according to the principle “from particularto general”, an alternative, “disaggregation” three-step method is applied whenusing another principle “from general to particular”. The authors modified thelatter by removing the correlation of residual variances. The proposed modeland corresponding table for estimating tree biomass makes it possible to calculatespruce stands biomass (t/ha) on Eurasian forests as the first approximationwhen using measuring taxation. Because such transcontinental models and tablesmay have biases in local conditions for their application, in the next stage ofthis research more detailed, regional tree biomass models and tables through“split” proposed here common model for regional ones using dummy variables willbe developed. 


Keywords:

Picea L., biosphere role of forests, biomass of trees, allometric models, sample plots, biological productivity, equations additivity, transcontinental table of tree biomass.


References:

1. Lohbeck M., Poorter L., Martinez-Ramos M., Bongers F. Biomass is the main driver of changes in ecosystem process rates during tropical forest succession // Ecology. 2015. Vol. 96. P. 1242–1252.

2. Martin P. A., Newton A. C., Bullock J. M. Carbon pools recover more quickly than plant biodiversity in tropical secondary forests // Proceedings of the Royal Society: B (Biological Sciences). 2013. Vol. 280. P. 1–8. DOI : 10.1098/rspb.2013.2236.

3. Усольцев В. А. Об аддитивных моделях биомассы деревьев: неопределенности и попытка их аналитического обзора // Эко-потенциал. 2017. № 2. С. 23–46.

4. Young H. E., Strand L., Altenberger R. Preliminary fresh and dry weight tables for seven tree species in Maine // Maine Agricultural Experiment Station, Technical Bulletin. 1964. № 12. 76 р.

5. Kozak A. Methods for ensuring additivity of biomass components by regression analysis // The Forestry Chronicle. 1970. Vol. 46. № 5. P. 402–404.

6. Parresol B. R. Assessing tree and stand biomass: a review with examples and critical comparison // Forest Science. 1999. Vol. 45. P. 573–593.

7. Parresol B. R. Additivity of nonlinear biomass equations // Canadian Journal of Forest Research. 2001. Vol. 31. P. 865–878.

8. Carvalho J. P., Parresol B. R. Additivity in tree biomass components of Pyrenean oak (Quercus pyrenaica Willd.) // Forest Ecology and Management. 2003. Vol. 179. P. 269–276.

9. Bi H., Turner J., Lambert M. J. Additive biomass equations for native eucalypt forest trees of temperate Australia // Trees. 2004. Vol. 18. P. 467–479.

10. Bi H., Murphy S., Volkova L., Weston Ch., Fairman T., Li Y., Law R., Norris J., Lei X., Caccamo G. Additive biomass equations based on complete weighing of sample trees for open eucalypt forest species in south-eastern Australia // Forest Ecology and Management. 2015. Vol. 349. P. 106–121. DOI : 10.1016/j.foreco.2015.03.007.

11. Daryaei A., Sohrabi H. Additive biomass equations for small diameter trees of temperate mixed deciduous forests // Scandinavian Journal of Forest Research. 2015. Vol. 31. № 4. P. 394–398.

12. Stankova T., Gyuleva V., Tsvetkov I., Popov E. at al. Aboveground dendromass allometry of hybrid black poplars for energy crops // Annals of Forest Research. 2016. Vol. 59. № 1. P. 61–74.

13. Tang S., Zhang H., Xu H. Study on establish and estimate method of compatible biomass model // Scientia Silvae Sinica. 2000. Vol. 36. P. 19–27.

14. Zeng W.S., Tang S. Z. Using measurement error modeling method to establish compatible single-tree biomass equations system // Forest Research. 2010. Vol. 23. P. 797–802.

15. Dong L., Zhang L., Li F. A three-step proportional weighting system of nonlinear biomass equations // Forest Science. 2015. Vol. 61. № 1. P. 35–45.

16. Zhang C., Peng D.-L., Huang G.-S., Zeng W.-S. Developing aboveground biomass equations both compatible with tree volume equations and additive systems for single-trees in poplar plantations in Jiangsu Province, China // Forests. 2016. Vol. 7. № 2. P. 32. DOI : 10.3390/f7020032.

17. Fu L., Lei Y., Wang G., Bi H., Tang S., Song X. Comparison of seemingly unrelated regressions with error-invariable models for developing a system of nonlinear additive biomass equations // Trees. 2016. Vol. 30. № 3. P. 839–857.

18. Usoltsev V. A. Single-tree biomass data for remote sensing and ground measuring of Eurasian forests : CD-version in English and Russian. Ekaterinburg : Ural State Forest Engineering University, 2016. URL : http://elar.usfeu.ru/handle/123456789/6103.

19. Usoltsev V. A., Voronov M. P., Kolchin K. V. Single-tree biomass structure of forest-forming species in trans-continental gradients of Eurasia // Eco-Potential. 2017. № 1. Р. 55–71.

20. Usoltsev V. А., Kolchin K. V., Voronov М. P. Dummy variables and biases of allometric models when local estimating tree biomass (on an example of Picea L.) // Eco-Potential. 2017. № 1 (17). P. 22–39 .

21. Usoltsev V. А., Kolchin K. V., Azarenok V. А. On possibilities for application of generic and regional allometric models, when local estimating spruce tree biomass // Agrarian Bulletin of the Urals. 2017. № 6. P. 33–37.


Download article as PDF:

Our database contains 2917 authors

We have published 2740 articles in 133 issues.

Bg