Agrarian
Bulletin
of the Urals

Russian Journal of Agricultural Research

The publication is registered by the Ministry of the Russian Federation
for Affairs of the Press, Television and Radio Broadcasting and Mass Communication Media.
Registration certificate: PI number 77-12831 on May 31, 2002
Subscription index in catalog «Russian Press» - 16356
ISSN 1997 - 4868 (Print)

The Journal is included in the list of the leading peer-reviewed scientific journals and publications, which should be published by the main results of theses for the degree of doctor and Ph.D.
The Journal is included in the Russian Science Citation Index.
Journal is included in the list of VAK (from 25.09.2017), No. 291

ISSN 2307-0005 (Online)
Key title: Agrarnyj vestnik Urala (Online)
Abbreviated key title: Agrar. vestn. Urala (Online)

Аграрный вестник Урала № 02 (181) 2019

Биология и биотехнологии

Сивкова Т. Н. Доктор биологических наук, доцент, Пермская ГСХА

Лазарева О. И. аспирант Пермский государственный аграрно-технологический университет имени академика Д. Н. Прянишникова

Прохорова Т. С. кандидат биологических наук, доцент Пермский государственный аграрно-технологический университет им. акад. Д. Н. Прянишникова

Бережко В. К. доктор биологических наук, профессор Всероссийский научно-исследовательский институт фундаментальной и прикладной паразитологии животных и растений имени К. И. Скрябина ФАНО России

Написанова Л. А. кандидат биологических наук Всероссийский научно-исследовательский институт фундаментальной и прикладной паразитологии животных и растений имени К. И. Скрябина ФАНО России

УДК:616-095[576.89: 579.8](57.085.2)

EFFECT OF THE SOMATIC EXTRACT OF ANISAKIS SIMPLEX L3 TO MICROORGANISMS IN VITRO

In the article, the influence of the somatic extract of Anisakis simplex L3 to the cultures ofmicroorganism cells in vitro is considered. The somatic extract from A. simplex L3 disrupts and depresses theprocess of dividing eukaryotic cells was established earlier. There are veryfew data on the mechanisms of interactions of somatic extracts of helminths andmicroorganisms. Somatic extractanisakids renders a negative effect on microorganisms due to its constituentprotein components and metabolites, it is supposed. Somatic extract from anisakids has anegative effect on microorganisms due to proteins and metabolites in itscomposition, it is assumed. The aim of the study was to study the effect extracton cell cultures of microorganisms diverse in morphology and resistance toenvironmental factors. The extractwas prepared from the larvae of anisakids, the larvae were removed from frozen Micromesistiuspoutassou, then the extract was checked for sterility and harmlessness, theprotein content was determined, then the disks were soaked with somaticextract. For thestudy, daily cultures bacteria were used: micrococci Micrococcus sp., of sticks Escherichiacoli, Proteus vulgaris, Salmonella tiphimurium, and bacilli Bacillus subtilis. Microorganismswere cultured with discs that contained an antigenic extract of anisakids in athermostat at + 37 ° C, after 12 hours, a growth retardation zone was detectedin Micrococcus sp., E. coli and P. vulgaris. The extract had no effect on thegrowth of S.tiphimurium, B. subtilis. Thesterility zone, which is formed temporarily, indicates that the extractcontains biological active components acting bacteriostatically onmicroorganisms. Themechanisms of bacteriostatic action of the somatic extract of Anisakis simplex L3 on bacteria were byassumed.


Keywords:

somatic extract, Anisakis simplex L3, metabolites, bacteria, bacilli, bacteriostatic action.


References:

1. Methodical instructions 4.2.1890-04. Determination of the sensitivity of microorganisms to antibacterial drugs, Methodical instructions, Moscow: Federal Center for State Sanitary and Epidemiological Supervision of the Russian Ministry of Health, 2004.

2. Volkova L. V., Grishina T. A., Volkov A. G. Low-molecular cationic peptides of leukocytes induced by various antigens. Bulletin of Perm National Research Polytechnic University. Chemical technology and biotechnology. 2015. No. 4. Pp. 35–48.

3. Sivkova T. N. Obtaining and characterization of helminths antigens: an educational-methodical manual Perm State Agricultural Academy. Perm: Publishing house of Perm State Agricultural Academy, 2009. – 14 p.

4. Sivkova T. N., Berezhko V. K. Karyopatic and pathomorphological action of metabolic products of anisakid larvae: monograph. Perm: Publishing house of Perm State Agricultural Academy, 2011. – 132 p.

5. Abner S. R., et al. Trichuris suis: detection of antibacterial activity in excretory-secretory products from adults. Exp. Parasitol. 2001. No. 99. Рp. 26–36.

6. Andersson M., Boman A., Boman H. H. Ascaris nematodes from pig and human make three antibacterial peptides: isolation of cecropin P1 and two ASABF peptides. Cell. Mol. Life Sci. 2003. No. 60. Рp. 599–606.

7. Audicana M. T., Kennedy M. W. Anisakis simplex: from obscure infectious worm to inducer of immune hypersensitivity. Clin Microbiol. Rev. 2008. No. 21. Рp. 360–379.

8. Belas R., Manos J., Suvanasuthi R. Proteus mirabilis ZapA metalloprotease degrades a broad spectrum of substrates, including antimicrobial peptides. Infect. Immun. 2004. No. 72. Рp. 5159–5167.

9. Delmar J. A., Su C. C., Yu E. W. Bacterial multidrug efflux transporters. Annu. Rev. Biophys. 2014. No. 43. Рp. 93–117.

10. Drake L., et al. The major secreted product of the whipworm, Trichuris, is a pore-forming protein. Proc. Biol. Sci. 1994. No. 257. Рp. 255–261.

11. Eberle R., et al. Isolation, identification and functional profile of excretory-secretory peptides from Onchocerca ochengi. Acta Trop. 2015. No. 142. Рp. 156–166.

12. Fæste C. K., et al. Characterisation of potential novel allergens in the fish parasite Anisakis simplex. EuPA Open Proteomics. 2014. No. 4. Рp. 140–155.

13. Fæste C. K. Fish feed as source of potentially allergenic peptides from the fish parasite Anisakis simplex (S.L.). Animal feed science and technology. Elsevier Science Publishing Company, Inc. 2015. No. 202. Рp. 52–61.

14. Haarder S., et al. Effect of ES products from Anisakis (Nematoda: Anisakidae) on experimentally induced colitis in adult zebra fish. Parasite Immunol. 2017. Vol. 39, I. 10. DOI 10.1111/pim.12456.

15. Joo H. S., Fu C. I., Otto M. Bacterial strategies of resistance to antimicrobial peptides. Philos Trans R Soc Lond B Biol Sci. 2016. No. 26. 371 (1695). Pp. 1–11. DOI 10.1098/rstb.2015.0292.

16. Kato Y. Humoral defense of the nematode Ascaris suum: antibacterial, bacteriolytic and agglutinating activities in the body fluid. Zoolog. Sci. 1995. No. 12. Рp. 225–230.

17. Mehrdana F., Buchmann K. Excretory/secretory products of anisakid nematodes: biological and pathological roles. Acta Veterinaria Scandinavica. 2017. No. 59:42. Рp. 1–12. DOI 10.1186/s13028-017-0310-3.

18. Midha A., Schlosser J., Hartmann S. Reciprocal Interactions between Nematodes and Their Microbial Environments. Frontiers in Cellular and Infection Microbiology. 2017. Vol. 7:144. Рp. 1–20. DOI: 10.3389/fcimb.2017.00144.

19. Peschel A., et al. Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor Mpr F is based on modification of membrane lipids with L-lysine. J. Exp. Med. 2001. No. 193. Рp. 1067–1076.

20. Reynolds L. A., Finlay B. B., Maizels R. M. Cohabitation in the intestine: interactions between helminth parasites, bacterial microbiota and host immunity. Journal of immunology. 2015. 195. No. 9. Рp. 4059–4066.

21. Schmidtchen A., et al. Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol. Microbiol. 2002. 46. Рp. 157–168.

22. Silhavy T. J., Kahne D., Walker S. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol. 2010 2 (5):a000414. DOI 10.1101/cshperspect.a000414.

23. Shelton C. L. Sap transporter mediated import and subsequent degradation of antimicrobial peptides in Haemophilus. PLoS Pathog. 2011 7(11):e1002360. DOI 10.1371/journal.ppat.1002360.

24. Svanevik C. S., Lunestad B.T., Levsen A. Effect of Anisakis simplex (sl) larvae on the spoilage rate and shelf-life of fish mince products under laboratory conditions. Food Control. 2014. No. 46. Рp. 121–126.

25. Tarr D. E. K. Distribution and characteristics of ABFs, cecropins, nemapores, and lysozymes in nematodes. Dev. Comp. Immunol. 2012. No. 36. Рp. 502–520.

26. Wardlaw A. C., Forsyth L. M., Crompton D. W. Bactericidal activity in the pig roundworm Ascaris suum. J. Appl. Bacteriol. 1994. No. 76. Рp. 36–41.

27. Zhang H., et al. In vitro antimicrobial properties of recombinant ASABF, an antimicrobial peptide isolated from the nematode Ascaris suum. Antimicrob. Agents Chemother. 2000. No. 44. Рp. 2701–2705.


Download article as PDF:

4.pdf (1.1 MB)

Our database contains 2917 authors

We have published 2740 articles in 133 issues.

Bg