Agrarian
Bulletin
of the Urals

Russian Journal of Agricultural Research

The publication is registered by the Ministry of the Russian Federation
for Affairs of the Press, Television and Radio Broadcasting and Mass Communication Media.
Registration certificate: PI number 77-12831 on May 31, 2002
Subscription index in catalog «Russian Press» - 16356
ISSN 1997 - 4868 (Print)

The Journal is included in the list of the leading peer-reviewed scientific journals and publications, which should be published by the main results of theses for the degree of doctor and Ph.D.
The Journal is included in the Russian Science Citation Index.
Journal is included in the list of VAK (from 25.09.2017), No. 291

ISSN 2307-0005 (Online)
Key title: Agrarnyj vestnik Urala (Online)
Abbreviated key title: Agrar. vestn. Urala (Online)

Аграрный вестник Урала № 09 (188) 2019

Биология и биотехнологии

Важев В.В. доктор химических наук, профессор, Костанайский социально-технический университет им. З. Алдамжар

Важева Н.В. кандидат педагогических наук, доцент, Костанайский государственный педагогический университет имени У. Султангазина

Губенко М. А. магистр химии, старший преподаватель Костанайский государственный педагогический университет имени У. Султангазина

Мунарбаева Б.Г. кандидат педагогических наук, доцент Костанайский социально-технический университет имени З. Алдамжар

УДК:619:615 + 544.165

QSAR modeling growth inhibitors Pasteurella multocida

 The search for effective drugs for the treatment of infectious diseases of farm animals is an urgent problem. The article presents the models of antipasteurllosis activity of a vast array of chemical compounds, built using descriptors generated by the Dragon program and the computer program PROGROC developed by us. Pasteurelosis is an infectious disease of many species of animals, caused by bacteria of the genus Pasteurella, has a wide geographical distribution and causes significant economic damage to livestock. Treatment of diseased animals with antibiotics is complicated by the emergence of forms of microorganisms that are resistant to them. To solve the problem of bacterial drug resistance, it is proposed to search for and select compounds with antipasteurellosis activity using QSAR (Quantitative Structure-Activity Relationship) methods. To assess the antipasteurellosis activity, the indicator lgMIC (MIC is the minimum inhibitory concentration of the substance) was used. The prediction quality was characterized by a correlation coefficient R between the predicted and experimental values of lgMIC and the standard deviation s. In the present work, models of inhibitory activity against Pasteurella multocida 362 chemical compounds selected at the ChEMBL site were obtained. The simulation involved 445 molecular structure descriptors calculated by the Dragon 7 program. The calculations were performed using the PROGROC computer program (PROGgram RObustness Calculation). The values of the correlation coefficient reached 0.9360–0.9549 for the control sample, where 55–61 % of the total set of substances are represented. When checking the quality of modeling by means of sliding control, the following indicators were obtained: R = 0.9297 and s = 0.40. Calculations were made for compounds with only threshold estimates (<lgMIC>) in the original database. The obtained estimated lgMIC estimates are in good agreement with the experimental ones, which indicates the possibility of replacing the experiment with less costly calculations.


Keywords:

Pasteurella multocida, antimicrobial activity, drugs, minimum inhibitory concentration MIC, QSAR, organic substances, descriptors, Dragon, correlation, PROGROC


References:

1. Laishevtsev A. I. Pasterellez sel’skokhozyaystvennykh zhivotnykh: sovremennaya epizooticheskaya situatsii na territorii Rossiyskoy Federatsii [Pasteurellosis of farm animals: сurrent epizootic situation in the territory of the Russian Federation] // Biotika. 2016. No. 2 (9). Pp. 41–46. (In Russian.)

2. Polkovnichenko A. P., Polkovnichenko P. A., Vorobyev D. V., Vorobyev V. I. Osobennosti biologicheskikh svoystv kul’tur R. multocida, vydelennykh ot zhivotnykh v usloviyakh Astrakhanskoy oblasti [Features of the biological properties of crops P. multocida isolated from animals in the Astrakhan region] // Uchenyye zapiski Kazanskoy gosudarstvennoy akademii veterinarnoy meditsiny im. N. E. Baumana. 2017. Vol. 3. Pp. 112–115. (In Russian.)

3. Kock R. A., Orynbayev M., Robinson S., Zuther S. [et al.] Saigas on the brink: Multidisciplinary analysis of the factors influencing mass mortality events [e-resource] // Science Advances. 2018. Vol. 4. No. 1. URL: https://advances.sciencemag.org/content /4/1/eaao2314.

4. Laishevtsev A. I., Kapustin A. V., Gulyukin A. M. Sravnitel’nyy analiz antibiotikochuvstvitel’nosti kollektsionnykh shtammov Pasteurella multocida, vydelennykh v period do 1990 g., s polevymi izolyatami, vydelennymi v techeniye 2014–2016 gg. ot krupnogo i melkogo rogatogo skota na territorii Rossiyskoy Federatsii [Comparative analysis of antibiotic sensitivity of collectible strains of Pasteurella multocida isolated in the period up to 1990 with field isolates isolated during 2014–2016 from cattle and small cattle in the territory of the Russian Federation] // Trudy Kubanskogo gosudarstvennogo agrarnogo universiteta. 2016. No. 63. Pp. 132–138. (In Russian.)

5. O rezul’tatakh monitoringa FGBU “VNIIZZH” antibiotikorezistentnosti vozbuditeley respiratornykh bolezney sviney [eresource] // Novosti Rossel’khoznadzora. 2015. September 4. URL: http://www.fsvps.ru/fsvps/print/news/14947.html. (In Russian.)

6. Mocelo-Castell R., Villanueva-Novelo C., Cáceres-Castillo D., Carballo R. M. [et al.] 2-Amino-4-arylthiazole Derivatives as Anti-giardial Agents: Synthesis, Biological Evaluation and QSAR Studies Quantitative Structure – Activity Relationship // Open Chem. 2015. No. 13. Pp. 1127–1136.

7. Panda S. S., Liaqat S., Girgis A. S., Samir A., Hall C. D., Katritzky A. R. Novel antibacterial active quinolone-fluoroquinolone conjugates and 2D-QSAR studies // Bioorganic & Medicinal Chemistry Letters 2015. No. 25. Pp. 3816–3821.

8. Panda S. S., Detistov O. S., Girgis A. S., Mohapatra P. P., Samir A., Katritzky A. R. Synthesis and molecular modeling of antimicrobial active fluoroquinolone-pyrazine conjugates with amino acid linkers. // Bioorganic & Medicinal Chemistry Letters 2016. No. 26. Pp. 2198–2205.

9. Dixit R., Soni L. K., Sharma R. CoMFA and CoMSIA Studies on 6, 8-Dibromo-4(3H)-Quinazolinone Derivatives for Anti-Bacterial Activity against Salmonella typhimurium // Journal of Drug Discovery and Therapeutics. 2017. No. (7). Pp. 93–96.

10. Faidallah H., Girgis A., Tiwari A., Honkanadavar H. [et al.] Synthesis, antibacterial properties and 2D-QSAR studies of quinolone-triazole conjugates // European Journal of Medicinal Chemistry 2018. No. 143. Pp. 1524–1534.

11. Ballu S., Itteboina R., Sivan S. K., Manga V. Rational design of methicillin resistance Staphylococcus aureus inhibitors through 3D-QSAR, molecular docking and molecular dynamics simulations // Computational Biology and Chemistry. 2018. No. 73. Pp. 95–104.

12. Hemal M. S., Popatbhai K. P., Mahesh T. C. [et al.] 2D-QSAR Study of a Series of Pyrazoline-Based Anti-Tubercular Agents Using Genetic Function Approximation // Journal of Computational Chemistry. 2015. Vol. 3. No. 4. Pp. 45–53.

13. Ahamad S., Islam A., Ahmad F., Dwivedi N., Hassan M. I. 2/3D-QSAR, molecular docking and MD simulation studies of FtsZ protein targeting benzimidazoles derivatives // Computational Biology and Chemistry. 2019. Vol. 78. Pp. 398–413.

14. Munnaluri R., Reddy Peddi S., Kanth Sivan S., Manga V. Computational studies on N-phenyl pyrrole derivatives as MmpL3 inhibitors in Mycobacterium tuberculosis // Computational Biology and Chemistry. 2019. No. 78. Pp. 81–94.

15. ChEMBL. European Molecular Biology Laboratory [Electronic resource]. URL: https://www.ebi.ac.uk/chembl.

16. Vazhev V. V., Munarbaeva B. G., Vazheva N. V., Gubenko M. A., Ergaliyeva E. M. Modelirovaniye antitoksoplazmoidnoy aktivnosti organicheskikh soyedineniy metodom QSAR. [Modeling antitoxoplasmoid activity of organic compounds by QSAR method] // Agrarian Bulletin of the Urals. 2018. No. 07 (174). Pp. 4–10. (In Russian.)


Download article as PDF:

Our database contains 2917 authors

We have published 2740 articles in 133 issues.

Bg